
Tutorial: Profilers
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie


A Profiler is a Tool
• Analyse performance or complexity of your program 

• What are my most time-hungry functions? - duration 

• What are my most commonly called functions? - 
frequency 

• .: Where should I put effort into optimisation? 

• How much memory is used and where? 

• Output: tables/spreadsheets and sometimes charts



Profilers
• Web browsers have great built-in and add-on profilers 

• Xcode has "Instruments" - very good visualisations 

• GNU/Linux has gprof - [should be] installed in labs 

• function durations and frequencies 

• Visual Studio has a profiler + lots of add-ons (Intel VTune etc.) 

• valgrind is great - installed in labs 

• very good for memory debugging 

• cache efficiency simulation



gprof
• Compile your program with the -pg flag 
 
gcc -pg -o myprogram main.c 

• Run the program, do normal stuff for a while 
 
./myprogram

• This spits out an output log file called gmon.out

• Run gprof on the log to produce results tables 
 
gprof myprogram gmon.out > results.txt 

• Delete gmon.out between runs to restart results collection 
 
rm gmon.out



Results: Flat Profile
functions

% of total program time 
used by each func

total time spent in  
each function by itself 
table is sorted by this

number of times 
func is called

text src: http://web.eecs.umich.edu/~sugih/pointers/gprof_quick.html

http://web.eecs.umich.edu/~sugih/pointers/gprof_quick.html


Optimising Things
• Short, frequently called utility functions 

• consider inlining

• Long functions 

• look at code - O(n^2)+? 

• can it be simplified? 

• Too many tiny function calls 

• hard to analyse and add up - look at call graph 

• high overhead - longer functions or recursion->loop?



Results: Call Graph

• [1],[2],etc. - start of entry 
• lines above - function that called this function 
• lines below - functions called by this function 
• costs include cost of child functions here



Optimising Things
• A library or driver is sucking up all the time 

• "Things That Make You Go Hmmm" 

• Can it be replaced? 

• Maybe this wheel should be reinvented… 

• Generic code is expensive / debug build is too slow 

• Do you really need those templates/inheritance/virtual functions? 

• Turn on compiler optimisations with -O or -O3  
 
NB: this produces carbon!



Optimising Things
• Read literature and ask experts 

• is there a data structure or algorithm for this? 

• e.g. O(n^2) -> find O(log n) 

• may require some creative adaptation 

• Know how the hardware works (and what it likes) 

• Look at assembled code for critical functions 

• are we misusing the cache or causing page faults



Optimising Things

• Profile again after trying things 

• usually you've made it worse 

• optimisation is hard but worth reasoning at this 
level about your work 

• try it on different computers



Optimising Things
• sometimes the answer is no 

• lose useful features/good work 

• lose clarity/simplicity 

• gains are too small to justify amount of work 

• optimised versions are too hardware-specific 

• engineering decisions… 

• what - are the target machines? 

• who - is using this code? 

• when - quality vs deadlines or product turn-around time


